Respuesta :

Answer:

[tex]f(x) =(x-1)(x-2)(x-3)[/tex]

Step-by-step explanation:

Given

[tex]f(x) = x^3-6x^2+11x-6[/tex]

Required

The factored form

[tex]f(x) = x^3-6x^2+11x-6[/tex]

Split

[tex]f(x) =x^3 -3x^2- 3x^2 +2x +9x -6[/tex]

Rearrange as:

[tex]f(x) = x^3 -3x^2 +2x - 3x^2+9x -6[/tex]

Factorize

[tex]f(x) = x(x^2 - 3x + 2) - 3(x^2 - 3x + 2)[/tex]

Factor out [tex]x^2 - 3x + 2[/tex]

[tex]f(x) = (x^2 - 3x + 2)(x - 3)[/tex]

Expand

[tex]f(x) = (x^2 - 2x - x + 2)(x - 3)[/tex]

Factorize

[tex]f(x) = (x(x - 2) - 1(x - 2))(x - 3)[/tex]

Factor out [tex]x - 2[/tex]

[tex]f(x) = (x - 1) (x - 2)(x - 3)[/tex]