ANSWER IT HOW THE QUESTIONS ARE ASKED!! Thank you so much!!

Answer:
[tex](a)\ Pr = \frac{2}{5}[/tex]
[tex](b)\ Pr = \frac{9}{20}[/tex]
[tex](c)\ E(Orange) = 100[/tex]
[tex](d)\ E(Orange) = 62.5[/tex]
Step-by-step explanation:
Solving (a): Theoretical probability of green or yellow
Here, we consider the spinner itself
From the attached image, we have:
[tex]n= 5[/tex] --- i.e. 5 sections
[tex]Yellow = 1[/tex]
[tex]Green = 1[/tex]
So, the probability is:
[tex]Pr = P(Yellow)\ or\ P(Green)[/tex]
[tex]Pr = \frac{Yellow}{n} + \frac{Green}{n}[/tex]
[tex]Pr = \frac{1}{5} + \frac{1}{5}[/tex]
Take LCM
[tex]Pr = \frac{1+1}{5}[/tex]
[tex]Pr = \frac{2}{5}[/tex]
Solving (b): Experimental probability of green or yellow
Here, we consider the result of the experiment
From the attached image, we have:
[tex]n= 40[/tex] --- i.e. 40 spins
[tex]Yellow = 12[/tex]
[tex]Green = 6[/tex]
So, the probability is:
[tex]Pr = P(Yellow)\ or\ P(Green)[/tex]
[tex]Pr = \frac{Yellow}{n} + \frac{Green}{n}[/tex]
[tex]Pr = \frac{12}{40} + \frac{6}{40}[/tex]
Take LCM
[tex]Pr = \frac{12+6}{40}[/tex]
[tex]Pr = \frac{18}{40}[/tex]
Simplify
[tex]Pr = \frac{9}{20}[/tex]
Solving (c): Expectation of orange outcomes in a spin of 500 times, theoretically.
Here, we consider the spinner itself
From the attached image, we have:
[tex]n= 5[/tex] --- i.e. 5 sections
[tex]Orange = 1[/tex]
So, the probability of having an outcome of orange in 1 spin is:
[tex]Pr = P(Orange)[/tex]
[tex]Pr = \frac{Orange}{n}[/tex]
[tex]Pr = \frac{1}{5}[/tex]
In 500 spins, the expectation is:
[tex]E(Orange) = Pr * 500[/tex]
[tex]E(Orange) = \frac{1}{5} * 500[/tex]
[tex]E(Orange) = 100[/tex]
Solving (c): Expectation of orange outcomes in a spin of 500 times, base on experiments.
Here, we consider the spinner itself
From the attached image, we have:
[tex]n= 40[/tex] --- i.e. 40 spins
[tex]Orange = 5[/tex]
So, the probability of having an outcome of orange is:
[tex]Pr = P(Orange)[/tex]
[tex]Pr = \frac{Orange}{n}[/tex]
[tex]Pr = \frac{5}{40}[/tex]
[tex]Pr = \frac{1}{8}[/tex]
In 500 spins, the expectation is:
[tex]E(Orange) = Pr * 500[/tex]
[tex]E(Orange) = \frac{1}{8} * 500[/tex]
[tex]E(Orange) = 62.5[/tex]