Respuesta :

Answer:

[tex](a)\ Pr = \frac{2}{5}[/tex]

[tex](b)\ Pr = \frac{9}{20}[/tex]

[tex](c)\ E(Orange) = 100[/tex]

[tex](d)\ E(Orange) = 62.5[/tex]

Step-by-step explanation:

Solving (a): Theoretical probability of green or yellow

Here, we consider the spinner itself

From the attached image, we have:

[tex]n= 5[/tex] --- i.e. 5 sections

[tex]Yellow = 1[/tex]

[tex]Green = 1[/tex]

So, the probability is:

[tex]Pr = P(Yellow)\ or\ P(Green)[/tex]

[tex]Pr = \frac{Yellow}{n} + \frac{Green}{n}[/tex]

[tex]Pr = \frac{1}{5} + \frac{1}{5}[/tex]

Take LCM

[tex]Pr = \frac{1+1}{5}[/tex]

[tex]Pr = \frac{2}{5}[/tex]

Solving (b): Experimental probability of green or yellow

Here, we consider the result of the experiment

From the attached image, we have:

[tex]n= 40[/tex] --- i.e. 40 spins

[tex]Yellow = 12[/tex]

[tex]Green = 6[/tex]

So, the probability is:

[tex]Pr = P(Yellow)\ or\ P(Green)[/tex]

[tex]Pr = \frac{Yellow}{n} + \frac{Green}{n}[/tex]

[tex]Pr = \frac{12}{40} + \frac{6}{40}[/tex]

Take LCM

[tex]Pr = \frac{12+6}{40}[/tex]

[tex]Pr = \frac{18}{40}[/tex]

Simplify

[tex]Pr = \frac{9}{20}[/tex]

Solving (c): Expectation of orange outcomes in a spin of 500 times, theoretically.

Here, we consider the spinner itself

From the attached image, we have:

[tex]n= 5[/tex] --- i.e. 5 sections

[tex]Orange = 1[/tex]

So, the probability of having an outcome of orange in 1 spin is:

[tex]Pr = P(Orange)[/tex]

[tex]Pr = \frac{Orange}{n}[/tex]

[tex]Pr = \frac{1}{5}[/tex]

In 500 spins, the expectation is:

[tex]E(Orange) = Pr * 500[/tex]

[tex]E(Orange) = \frac{1}{5} * 500[/tex]

[tex]E(Orange) = 100[/tex]

Solving (c): Expectation of orange outcomes in a spin of 500 times, base on experiments.

Here, we consider the spinner itself

From the attached image, we have:

[tex]n= 40[/tex] --- i.e. 40 spins

[tex]Orange = 5[/tex]

So, the probability of having an outcome of orange is:

[tex]Pr = P(Orange)[/tex]

[tex]Pr = \frac{Orange}{n}[/tex]

[tex]Pr = \frac{5}{40}[/tex]

[tex]Pr = \frac{1}{8}[/tex]

In 500 spins, the expectation is:

[tex]E(Orange) = Pr * 500[/tex]

[tex]E(Orange) = \frac{1}{8} * 500[/tex]

[tex]E(Orange) = 62.5[/tex]