Respuesta :

Answer:

[tex](a)\ Mean = 80kg[/tex]

[tex](b)\ Median = 76kg[/tex]

[tex](c)\ Mode = 61kg[/tex]

Step-by-step explanation:

Given

[tex]Data:105kg, 53kg ,76kg ,91kg ,120kg ,61kg ,55kg ,98kg ,61kg[/tex]

[tex]n = 9[/tex]

Solving (a): The mean

This is calculated using:

[tex]\bar x = \frac{\sum x}{n}[/tex]

[tex]\bar x = \frac{105kg+53kg +76kg +91kg +120kg +61kg +55kg +98kg +61kg}{9}[/tex]

[tex]\bar x = \frac{720kg}{9}[/tex]

[tex]\bar x = 80kg[/tex]

Hence:

[tex]Mean = 80kg[/tex]

Solving (b): The median

[tex]Data:105kg, 53kg ,76kg ,91kg ,120kg ,61kg ,55kg ,98kg ,61kg[/tex]

Arrange in ascending order

[tex]Data: 53kg ,55kg, 61kg ,61kg,76kg ,91kg ,98kg , 105kg,120kg[/tex]

[tex]n = 9[/tex]

So, the position of the median element is:

[tex]Median = \frac{n+1}{2}th[/tex]

[tex]Median = \frac{9+1}{2}th[/tex]

[tex]Median = \frac{10}{2}th[/tex]

[tex]Median = 5th[/tex]

The 5th element is 76kg

Hence:

[tex]Median = 76kg[/tex]

Solving (c): The mode

In the given data

[tex]Mode = 61kg[/tex]

Because it has a frequency of 2 (the highest), others have 1