Respuesta :

Answer:

[tex]\cos(A) = \frac{60}{61}[/tex]

Step-by-step explanation:

Given

[tex]\tan(A) = \frac{11}{60}[/tex]

[tex]0 \le A \le 90[/tex] --- First Quadrant

Required

Find cos(A)

The tan of an angle is:

[tex]\tan(A) = \frac{Opposite}{Adjacent}[/tex]

and

[tex]\tan(A) = \frac{11}{60}[/tex]

By comparison:

[tex]Opposite = 11[/tex]

[tex]Adjacent = 60[/tex]

So, the hypotenuse is:

[tex]Hypotenuse^2 = Adjacent^2 + Opposite^2[/tex]

[tex]Hypotenuse^2 = 60^2 + 11^2[/tex]

[tex]Hypotenuse^2 = 3721[/tex]

Take square roots

[tex]Hypotenuse = \sqrt{3721[/tex]

[tex]Hypotenuse = 61[/tex]

The cosine of an angle is:

[tex]\cos(A) = \frac{Adjacent}{Hypotenuse}[/tex]

This gives:

[tex]\cos(A) = \frac{60}{61}[/tex]