At a candy store, Brooke bought 1
pound of jelly beans and 6 pounds
of gummy worms for $42
Meanwhile, Ken bought 5 pounds
of jelly beans and 4 pounds of
gummy worms for $54. How
much does one pound of jelly
beans and one pound of gummy
worms candy cost?

Respuesta :

Answer:

One pound of jelly  beans and one pound of gummy  worms candy cost $6 each

Step-by-step explanation:

Given

Let

[tex]J \to[/tex] Jelly Beans

[tex]G \to[/tex] Gummy worms

So, we have:

Brook

[tex]J + 6G = 42[/tex]

Ken

[tex]5J + 4G = 54[/tex]

Make J the subject in the first equation

[tex]J + 6G = 42[/tex]

[tex]J = 42 - 6G[/tex]

Substitute [tex]J = 42 - 6G[/tex] in [tex]5J + 4G = 54[/tex]

[tex]5*[42 - 6G] + 4G = 54[/tex]

Open bracket

[tex]210 - 30G + 4G = 54[/tex]

[tex]210 -26G = 54[/tex]

Collect like terms

[tex]-26G = 54 - 210\\[/tex]

[tex]-26G = -156[/tex]

Divide both sides by -26

[tex]G = 6[/tex]

Substitute [tex]G = 6[/tex] in [tex]J = 42 - 6G[/tex]

[tex]J = 42 - 6*6[/tex]

[tex]J = 42-36[/tex]

[tex]J = 6[/tex]