1) Solve for Side A.
2) Solve for Angle B.

Answer:
solution given;
let
AB=a
AC=b=30ft
AB=c=20ft
<A=115°
By using Cosine rule.
a²=b²+c²-2bc cos angle
a²=30²+20²-2*30*20 Cos 115°
a²=1807.1419
a=√[1807.1419]
a=42.51
Side A is 42.51ft.
Again
Cos B=[tex] \frac{a²+c²-b²}{2ac} [/tex]
Cos B=[tex] \frac{42.51²+20²-30²}{2*42.51*20} [/tex]
Cos B=0.7687
<B=Cos -¹(0.7687)
<B=39.46°
Angle B is 39.46
___________________________________
[tex]\quad\quad\quad\quad\tt{ \angle{A = 115° }}[/tex]
[tex] \tt{\overline{A}²=b²+c²-2bc \cos( \angle{a}) }[/tex]
[tex] \tt{\overline{A}²=(30)²+(20)²-2(30)(20) \cos( \angle{115°}) }[/tex]
[tex] \tt{\overline{A}²=900+400-2(600) \cos( \angle{115°}) }[/tex]
[tex] \tt{\overline{A}²=1300-1200 \cos( \angle{115°}) }[/tex]
[tex] \tt{\overline{A} ²=1807.1419}[/tex]
[tex] \tt{\overline{A}= \sqrt{ 1807.1419}}[/tex]
[tex] \pink {\boxed{ \tt{ \overline{A}=42.51}}}[/tex]
[tex] \tt{ cos\;B = \frac{ {a}^{2} + {c}^{2} - {b}^{2} }{2ac} }[/tex]
[tex] \tt{ cos\:B = \frac{ {42.51}^{2} + {20}^{2} - {30}^{2} }{2(42.51)(20)} }[/tex]
[tex] \tt{ cos\:B = 0.7687}[/tex]
[tex] \tt{ \angle{B} = { \cos}^{ - 1} (0.7687)}[/tex]
[tex]\pink{\boxed{\tt{ \angle{B} = {39.46°}}}}[/tex]
___________________________________
#CarryOnLearning
✍︎ C.Rose❀