Respuesta :

Answer:

[tex]\boxed {\boxed {\sf 5.35 \ L}}[/tex]

Explanation:

Molarity is a measure of concentration in moles per liter.

[tex]molarity= \frac{moles \ of \ solute}{liters \ of \ solution}}[/tex]

We know the molarity of the solution is 0.99 M and there are 5.3 moles of the solute, CuCl₂.

  • 1 molar (M) is equal to 1 mole per liter.
  • 0.99 M is equal to 0.99 moles of CuCl₂ per liter.

So,

  • molarity= 0.99 mol CuCl₂/L
  • moles of solute = 5.3 mol CuCl₂
  • liters of solution = x (unknown)

Substitute these values into the formula.

[tex]0.99 \ mol \ CuCl_2 / L =\frac{5.3 \ mol \ CuCl_2}{x}[/tex]

Now, solve for x by isolating the variable. First, cross multiply.

[tex]\frac {0.99 \ mol \ CuCl_2}{1}=\frac {5.3 \ mol \ CuCl_2}{x}[/tex]

[tex]0.99 \ mol \ CuCl_2 /L *x= 5.3 \ mol \ CuCl_2*1[/tex]

[tex]0.99 \ mol \ CuCl_2 /L *x= 5.3 \ mol \ CuCl_2[/tex]

x is being multiplied by 0.99 mol CuCl₂/L. The inverse of multiplication is division. Divide both sides of the equation by 0.99 mol CuCl₂/L .

[tex]\frac {0.99 \ mol\ CuCl_2 / L*x}{ 0.99 \ mol\ CuCl_2 \ L }=\frac {5.3 \ mol \ CuCl_2}{0.99 \ mol\ CuCl_2 \ L }[/tex]

[tex]x=\frac {5.3 \ mol \ CuCl_2}{0.99 \ mol\ CuCl_2 \ L }[/tex]

[tex]x=5.35353535354 \ L[/tex]

Let's round to the hundredth place. The 3 in the thousandth place tells us to leave the 5 in the hundredth place.

[tex]x \approx 5.35 \ L[/tex]

Approximately 5.35 liters are needed to make a 0.99 M solution with 5.3 moles of solute.