The X and Y coordinates (in feet) for station Shore are 2058.97 and 6980.06, respectively, and those for station Rock are 1408.03 and 6980.06, respectively. What are the azimuth, bearing, and length of the line connecting station Shore to station Rock

Respuesta :

Answer:

Hence, the azimuth, bearing, and length of the line connecting station Shore to station Rock are [tex]270^{\circ},90^{\circ}[/tex] and [tex]650.94[/tex] feet.

Given :

The shore station point [tex](X_1,Y_1)[/tex] in feet,

        [tex](X_1,Y_1)=(2058.97, 6980.06)[/tex]

The Rock station point [tex](X_2,Y_2)[/tex] in feet

       [tex](X_2,Y_2)=(1408.03,6980.06)[/tex]

From the figure

     [tex]x=2058.97-1408.03=650.94[/tex] feet

    [tex]y=6980.06-6980.06=0\\[/tex] feet

Length of the line [tex]L=\sqrt{x^2+y^2}[/tex]

                           [tex]\Rightarrow L=\sqrt{(650.94)^2+0}=650.94[/tex]

                            [tex]\Rightarrow L=650.94[/tex] feet

[tex]\because[/tex] [tex]\tan \theta=\frac{y}{x}=\frac{0}{x}=0[/tex]

[tex]\Rightarrow \theta=\tan^{-1}(0)=0[/tex]

Azimuth of line[tex]=270^{\circ}+\theta[/tex]

                       [tex]=270^{\circ}+0[/tex]

                      [tex]=270^{\circ}[/tex]

[tex]\therefore[/tex] Bearing [tex]=360^{\circ}-\text{Azimuth}[/tex]

                [tex]=360^{\circ}-270^{\circ}[/tex]

                [tex]=90^{\circ}[/tex]

Ver imagen Omm2