Answer:
Hence, the margin error is [tex]1415.62189[/tex] and the confidence interval for the mean is [tex](41234.38,44065.62)[/tex].
Step-by-step explanation:
Given :
Sample size [tex]n=135[/tex]
Sample mean [tex]\bar{x}=\$42,650[/tex]
Standard deviation [tex]\sigma =\$8,988[/tex]
Confidence level is [tex]93\%[/tex]
(a)
The margin error [tex]=Z_{\frac{\alpha}{2}}\times \frac{\sigma}{\sqrt{n}}[/tex]
[tex]\because \alpha =1-[/tex]confidence level
[tex]\Rightarrow \alpha=1-93\%=1-0.93[/tex]
[tex]\Rightarrow \alpha=0.07\Rightarrow \frac{\alpha}{2}=0.035[/tex]
[tex]Z_{\frac{\alpha}{2}}=Z_{0.035}=1.83[/tex] from the [tex]z-[/tex]table
Now, the margin error[tex]=1.83\times \frac{8988}{\sqrt{135}}[/tex]
[tex]=1415.62189[/tex]
(b)
The confidence interval for the mean [tex]\mu\\[/tex] :
[tex](\bar{x}-\text{margin error},\bar{x}+\text{margin error})[/tex]
[tex]\Rightarrow (\bar{x}-1415.62189,\bar{x}+1415.62189)[/tex]
[tex]\Rightarrow (42650-1415.62189,42650+1415.62189)\\\Rightarrow (41234.38,44065.62)[/tex]