1. The U.S. Department of Agriculture reported a random sample of 36 Americans consumed an average of 69 gallons of carbonated beverages per year. Assume that the population standard deviation is 20 gallons. Find the 95% confidence interval for the number of gallons of carbonated beverages consumed per year by Americans.(round the final answer to 3 decimal places.)

Respuesta :

Answer:

Hence, the confidence interval is [tex](63.517,74.483)[/tex] gallons.

Given :

Sample size[tex]=36[/tex]

Sample mean [tex]=69[/tex] gallons

Standard deviation [tex]=20[/tex] gallons

So, the standard error [tex]=\frac{20}{\sqrt{36}}=20/6=3.33[/tex]

Confidence level [tex]=95\%[/tex]

To find :

The [tex]95\%[/tex] confidence interval for the number of gallons of carbonated beverages consumed per year by Americans.

Explanation :

[tex]\because[/tex] Confidence interval [tex]=(\text{Sample mean}-\text{margin error},\text{Sample mean}+\text{margin error})[/tex]

Margin error [tex]=Z_{\frac{\alpha}{2}}\times\frac{\sigma}{\sqrt{n}}[/tex]

Here, [tex]\alpha=1-95\%=1-0.95[/tex]

      [tex]\Rightarrow \alpha=0.05\Rightarrow \frac{\alpha}{2}=0.025[/tex]

    [tex]Z_{\frac{\alpha}{2}}=Z_{0.025}=1.645[/tex] from the [tex]z-[/tex]table.

So, Margin error [tex]=Z_{\frac{\alpha}{2}}\times\frac{\sigma}{\sqrt{n}}[/tex]

                         [tex]=1.645\times\frac{20}{6}=1.645\times3.33[/tex]

                        [tex]=5.483[/tex]

Therefore, the confidence interval is:

   [tex](69-5.483,69+5.483)[/tex]

[tex]=(63.517,74.483)[/tex] gallons.