Respuesta :

Answer:

Step-by-step explanation:

Property of the perpendicular lines,

If the two lines [tex]L_1[/tex] and [tex]L_2[/tex] having slopes [tex]m_1[/tex] and [tex]m_2[/tex] are perpendicular to each other,

Then [tex]m_1\times m_2=-1[/tex]

Equation of line [tex]L_1[/tex] → y = 3x + 5 ------(1)

Equation of line [tex]L_2[/tex] → 6y + 2x = 1 ------- (2)

Slope of line [tex]L_1[/tex],

[tex]m_1=3[/tex]

Slope of line [tex]L_2[/tex],

6y + 2x = 1

6y = -2x + 1

[tex]y=-\frac{2}{6}x+\frac{1}{6}[/tex]

[tex]y=-\frac{1}{3}x+\frac{1}{6}[/tex]

Therefore, [tex]m_2=-\frac{1}{3}[/tex]

By using the property of perpendicular lines,

[tex]m_1\times m_2=3\times (-\frac{1}{3} )[/tex]

              [tex]=-1[/tex]

Therefore, both the lines are perpendicular.