Respuesta :
Answer:
a) SAT score = 1075
b) ACT score = 19.2.
c) ACT score = 27.9.
Step-by-step explanation:
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
(A) If a student gets an SAT score that is the 51-percentile, find the actual SAT score
SAT scores have mean 1070 and standard deviation 204, so [tex]\mu = 1070, \sigma = 204[/tex]
51th percentile means that Z has a p-value of 0.51, so Z = 0.025. The score is X. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]0.025 = \frac{X - 1070}{204}[/tex]
[tex]X - 1070 = 0.025*204[/tex]
[tex]X = 1075[/tex]
SAT score = 1075.
(B) What would be the equivalent ACT score for this student?
ACT scores have mean of 19.1 and standard deviation of 5.2, which means that [tex]\mu = 19.1, \sigma = 5.2[/tex]. The equivalent score is X when Z = 0.025. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]0.025 = \frac{X - 19.1}{5.2}[/tex]
[tex]X - 19.1 = 0.025*5.2[/tex]
[tex]X = 19.2[/tex]
ACT score = 19.2.
(C) If a student gets an SAT score of 1417, find the equivalent ACT score.
Z-score for the SAT:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{1417 - 1070}{204}[/tex]
[tex]Z = 1.7[/tex]
Equivalent score on the ACT:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]1.7 = \frac{X - 19.1}{5.2}[/tex]
[tex]X - 19.1 = 1.7*5.2[/tex]
[tex]X = 27.9[/tex]
ACT score = 27.9.