In the △ABC, the height AN = 24 in, BN = 18 in, AC = 40 in. Find AB and BC. Consider all possible cases. Case 1 : N∈BC, AB = __, BC = __ Case 2 : B∈NC, AB = __, BC = __ Case 3 : C∈BN, AB = __, BC = __

Respuesta :

Answer:

Case 1:

[tex]AB = 30[/tex]

[tex]BC = 50[/tex]

Case 2:

[tex]AB = 15.9[/tex]

[tex]BC = 36.7[/tex]

Case 3: Not possible

Step-by-step explanation:

Given

See attachment for illustration of each case

Required

Find AB and BC

Case 1:

Using Pythagoras theorem in ANB, we have:

[tex]AB^2 = AN^2 + BN^2[/tex]

This gives:

[tex]AB^2 = 24^2 + 18^2[/tex]

[tex]AB^2 = 576 + 324[/tex]

[tex]AB^2 = 900[/tex]

Take square roots of both sides

[tex]AB = \sqrt{900[/tex]

[tex]AB = 30[/tex]

To calculate BC, we consider ANC, where:

[tex]AC^2 = AN^2 + NC^2[/tex]

[tex]40^2 = 24^2 + NC^2[/tex]

[tex]1600 = 576 + NC^2[/tex]

Collect like terms

[tex]NC^2 = 1600 - 576[/tex]

[tex]NC^2 = 1024[/tex]

Take square roots

[tex]NC = \sqrt{1024[/tex]

[tex]NC = 32[/tex]

So:

[tex]BC = NC + BN[/tex]

[tex]BC = 32 + 18[/tex]

[tex]BC = 50[/tex]

Case 2:

Using Pythagoras theorem in ANB, we have:

[tex]AN^2 = AB^2 + BN^2[/tex]

This gives:

[tex]24^2 = AB^2 + 18^2[/tex]

[tex]576 = AB^2 + 324[/tex]

Collect like terms

[tex]AB^2 = 576 - 324[/tex]

[tex]AB^2 = 252[/tex]

Take square roots of both sides

[tex]AB = \sqrt{252[/tex]

[tex]AB = 15.9[/tex]

To calculate BC, we consider ABC, where:

[tex]AC^2 = AB^2 + BC^2[/tex]

[tex]40^2 = 252 + BC^2[/tex]

[tex]1600 = 252 + BC^2[/tex]

Collect like terms

[tex]BC^2 = 1600 - 252[/tex]

[tex]BC^2 = 1348[/tex]

Take square roots

[tex]BC = \sqrt{1348[/tex]

[tex]BC = 36.7[/tex]

Case 3:

This is not possible because in ANC

The hypotenuse AN (24) is less than AC (40)

Ver imagen MrRoyal