what is the midpoint of AB with A(-1, 5) and B(6, -3) A (-4, 3.5) B (1, 2.5) C (2.5, 1) D (3.5, -4)

Answer:
Option C (2.5, 1) is the right alternative.
Step-by-step explanation:
The given points are:
A = (-1, 5) = (x₁, y₁)
B = (6, -3) = (x₂, y₂)
Now,
The midpoint on X-axis is:
= [tex]\frac{x_1+x_2}{2}[/tex]
= [tex]\frac{-1+6}{2}[/tex]
= [tex]\frac{5}{2}[/tex]
= [tex]2.5[/tex]
The midpoint on Y-axis is:
= [tex]\frac{y_1+y_2}{2}[/tex]
= [tex]\frac{5+(-3)}{2}[/tex]
= [tex]\frac{5-3}{2}[/tex]
= [tex]\frac{2}{2}[/tex]
= [tex]1[/tex]
Thus the midpoint of AB is "2.5, 1".