Respuesta :

Answer:

x = -44/13

y = -65/13

Step-by-step explanation:

Using matrix form means using the crammers rule

The matrix form of the expression is written as;

[tex]\left[\begin{array}{ccc}8&5\\-1&1\\\end{array}\right] \left[\begin{array}{ccc}x\\y\\\end{array}\right] = \left[\begin{array}{ccc}9\\7\\\end{array}\right][/tex]

AX = B

taking the determinant of A;

|A| = 8(1) - 5(-1)

|A| = 8 + 5

|A| = 13

After replacing the first row with the column matrix;

[tex]A_x =\left[\begin{array}{ccc}9&5\\7&-1\\\end{array}\right][/tex]

|Ax| = 9(-1)-5(7)

||Ax| = -9 - 35

|Ax| = -44

x = |Ax|/|A|

x = -44/13

similarly for y

[tex]A_x =\left[\begin{array}{ccc}8&9\\-1&7\\\end{array}\right][/tex]

|Ay| = 8(7)+9

|Ay| = 56+9

|Ay| = 65

y = |Ay|/|A|

y = -65/13