Let a, β, y be the three interior angles of any triangle, and try to prove that cos(a+β+y) = -1.
[tex]prove \: that \: \cos( \alpha + \beta + \gamma ) = - 1[/tex]

Respuesta :

Given:

[tex]\alpha, \beta, \gamma[/tex] are three interior angles of any triangle.

To prove:

[tex]\cos (\alpha+\beta+\gamma)=-1[/tex]

Solution:

According to the angle sum property of a triangle, the sum of all three interior angle of a triangle is always 180 degrees.

It is given that, [tex]\alpha, \beta, \gamma[/tex] are three interior angles of any triangle.

Using the angle sum property of triangles, we get

[tex]\alpha+\beta+\gamma =180^\circ[/tex]              ...(i)

We need to prove,

[tex]\cos (\alpha+\beta+\gamma)=-1[/tex]

Taking LHS, we get

[tex]LHS=\cos (\alpha+\beta+\gamma)[/tex]

[tex]LHS=\cos (180^\circ)[/tex]                [Using (i)]

[tex]LHS=-1[/tex]

[tex]LHS=RHS[/tex]

Hence proved.