contestada


Find the volume and surface area of the composite figure. Give your answer in terms of pi
PLS HELP

Find the volume and surface area of the composite figure Give your answer in terms of pi PLS HELP class=

Respuesta :

Given:

A diagram of a composite figure.

Radius of cone and hemisphere is 8 cm.

Height of the cone is 15 cm.

To find:

The volume and the surface area of the composite figure.

Solution:

Volume of a cone is:

[tex]V_1=\dfrac{1}{3}\pi r^2h[/tex]

Where, r is the radius and h is the height of the cone.

Putting [tex]r=8,h=15[/tex] in the above formula, we get

[tex]V_1=\dfrac{1}{3}\pi (8)^2(15)[/tex]

[tex]V_1=\pi (64)(5)[/tex]

[tex]V_1=320\pi[/tex]

Volume of the hemisphere is:

[tex]V_2=\dfrac{2}{3}\pi r^3[/tex]

Where, r is the radius.

Putting [tex]r=8[/tex], we get

[tex]V_2=\dfrac{2}{3}\pi (8)^3[/tex]

[tex]V_2=\dfrac{1024}{3}\pi [/tex]

[tex]V_2\approx 341.3\pi [/tex]

Now, the volume of the composite figure is:

[tex]V=V_1+V_2[/tex]

[tex]V=320\pi +341.3\pi[/tex]

[tex]V=661.3\pi[/tex]

The volume of the composite figure is 661.3π cm³.

The curved surface area of a cone is:

[tex]A_1=\pi r\sqrt{h^2+r^2}[/tex]

Where, r is the radius and h is the height of the cone.

Putting [tex]r=8,h=15[/tex] in the above formula, we get

[tex]A_1=\pi (8)\sqrt{(15)^2+(8)^2}[/tex]

[tex]A_1=\pi (8)\sqrt{289}[/tex]

[tex]A_1=\pi (8)(17)[/tex]

[tex]A_1=136 \pi [/tex]

The curved surface area of the hemisphere is:

[tex]A_2=2\pi r^2[/tex]

Where, r is the radius.

Putting [tex]r=8[/tex], we get

[tex]A_2=2\pi (8)^2[/tex]

[tex]A_2=2\pi (64)[/tex]

[tex]A_2=128\pi [/tex]

Total surface area of the composite figure is:

[tex]A=A_1+A_2[/tex]

[tex]A=136\pi +128\pi[/tex]

[tex]A=264\pi[/tex]

The total surface area of the composite figure is 264π cm².

Therefore, the correct option is A.