Respuesta :

Answer: 72

Step-by-step explanation:

30+48=78

√78^2-30^2=

√5184=

72

If AO = 30, BC = 48 then, AB = 72.

What is tangent?

"Tangent to a circle is the line that touches the circle at only one point."

"A tangent to a circle is always perpendicular to the radius of a circle."

For given question,

AB is tangent to circle.

Also, AO = 30, BC = 48

From figure, we can observe that,

AO = CO                            .......................(radius of circle)

⇒OC = 48

Also,

OB = OC + BC

⇒ OB = 30 + 48

⇒ OB = 78

We know, a tangent to a circle is always perpendicular to the radius of a circle.

⇒ AB ⊥ AO

This means, ΔAOB is right triangle.

Using Pythagoras theorem to right triangle AOB,

⇒ [tex](OB)^{2} = (AO)^{2} + (AB)^{2}[/tex]

⇒ [tex](AB)^2 = (OB)^{2} - (AO)^{2}[/tex]

⇒ [tex](AB)^2=(78)^2-(30)^2[/tex]

⇒ [tex](AB)^2=5184[/tex]

⇒ [tex]AB=\sqrt{5184}[/tex]

⇒ [tex]\bold{AB=72}[/tex]

Therefore, option (D) is the correct answer.

Learn more about tangent to a circle here:

https://brainly.com/question/23265136

#SPJ2