Respuesta :

Given:

The radius of the circle X is XY.

Coordinates of X are (0,3) and coordinates of Y are (-3,-1).

To find:

The area of the circle.

Solution:

Distance formula:

[tex]D=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

The radius of the circle is the distance between the points X(0,3) and Y(-3,-1).

[tex]XY=\sqrt{(-3-0)^2+(-1-3)^2}[/tex]

[tex]XY=\sqrt{(-3)^2+(-4)^2}[/tex]

[tex]XY=\sqrt{9+16}[/tex]

[tex]XY=\sqrt{25}[/tex]

[tex]XY=5[/tex]

The radius of the circle is 5 units.

The area of the circle is:

[tex]A=\pi r^2[/tex]

Where, r is the radius of the circle.

Putting [tex]\pi=3.14, r=5[/tex] in the above formula, we get

[tex]A=(3.14)(5)^2[/tex]

[tex]A=(3.14)(25)[/tex]

[tex]A=78.5[/tex]

Therefore, the area of the circle is 78.5 square units.