Triangle ABC has side lengths a=74.1, b= 60.8, c=114.2. What is the measure of angle C?
a. 35.9°
b. 28.8°
c. 96.4°
d. 115.3°

Respuesta :

Given:

In triangle ABC, a=74.1, b= 60.8, c=114.2.

To find:

The measure of angle C.

Solution:

According to the Law of cosine:

[tex]\cos C=\dfrac{a^2+b^2-c^2}{2ab}[/tex]

Substituting [tex]a=74.1,b= 60.8,c=114.2[/tex], we get

[tex]\cos C=\dfrac{(74.1)^2+(60.8)^2-(114.2)^2}{2(74.1)(60.8)}[/tex]

[tex]\cos C=\dfrac{5490.81+3696.64-13041.64}{9010.56}[/tex]

[tex]\cos C=\dfrac{-3854.19}{9010.56}[/tex]

[tex]\cos C=-0.42774145[/tex]

Taking cos inverse on both sides, we get

[tex]C=\cos^{-1}{-0.42774145}[/tex]

[tex]C=115.324312[/tex]

[tex]C=115.3^\circ[/tex]

Therefore, the correct option is d.