Answer:
[tex]|x - y| > 10[/tex] ---- Nita wins
[tex]|x - y| < 10[/tex] --- Eric wins
Step-by-step explanation:
The complete instruction is to determine the range at which Erik or Nita wins.
To start with, let
[tex]x \to[/tex] Erik's score
[tex]y \to[/tex] Nita's score
If the difference is greater than 10, the Nita wins.
This implies that:
[tex]|x - y| > 10[/tex] ---- Nita
If less than 10, then Eric wins
This implies that:
[tex]|x - y| < 10[/tex] --- Eric wins
Now, assume that Nita chose 5.
For Nita to win, we have:
[tex]|x - y| > 10[/tex]
[tex]|x - 5| > 10[/tex]
Remove the absolute symbol
[tex]-10 > x - 5 > 10[/tex]
Split
[tex]-10 > x - 5\ or\ x - 5 > 10[/tex]
Solve for x
[tex]5 -10 > x \ or\ x > 10 + 5[/tex]
[tex]-5> x \ or\ x > 15[/tex]
Rewrite as:
[tex]x< -5 \ or\ x > 15[/tex]
x cannot be negative.
So:
[tex]x > 15[/tex]
x cannot exceed 20.
So:
[tex]15 < x \le 20[/tex]