A laboratory tested twelve chicken eggs and found that the mean amount of cholesterol was 185 milligrams with s = 17.6 milligrams. A confidence interval of 173.8 mg < μ < 196.2 mg is constructed for the true mean cholesterol content of all such eggs. It was assumed that the population has a normal distribution. What confidence level does this interval represent?

Respuesta :

Answer:

The appropriate solution is "95%".

Step-by-step explanation:

The given values are:

Lower bound,

= 173.8

Upper bound,

= 196.2

Mean of cholesterol,

= 138 milligrams

S = 17.6 mg

Now,

The margin of error (E) will be:

=  [tex]\frac{Upper \ bound-Lower \ bound}{2}[/tex]

=  [tex]\frac{196.2-173.8}{2}[/tex]

=  [tex]\frac{22.4}{2}[/tex]

=  [tex]11.2[/tex]

As we know,

⇒  [tex]E=t_{\alpha 12}\times \frac{S}{\sqrt{n} }[/tex]

On putting the values, we get

⇒   [tex]11.2=t_{\alpha 12}\times \frac{17.6}{\sqrt{12} }[/tex]

On applying cross-multiplication, we get

⇒   [tex]t_{\alpha 12}=2.2044[/tex]

∴ [tex]\frac{\alpha}{2} =0.025[/tex]

   [tex]\alpha = 0.025\times 2[/tex]

      [tex]=0.05[/tex]

hence,

The confidence level will be:

⇒  [tex]CI=1-\alpha[/tex]

⇒        [tex]=1-0.05[/tex]

⇒        [tex]=0.95[/tex]

⇒        [tex]=95[/tex]%