A fan oscillates 250* and can be felt from a distance of 4 feet away . To the nearest tenth what area of the room can feel the wind from the fan? Use 3.14 for pi .

Respuesta :

Answer:

[tex]A=256.67ft^2[/tex]

Step-by-step explanation:

From the question we are told that:

Fan oscillates [tex]\theta=250[/tex]

Distance [tex]d=>Raduis\ r=4 feet[/tex]

Since

 [tex]250\textdegree =180\textdegree +70\textdegree[/tex]

Generally the equation for the area A is mathematically given by

 [tex]Area=Area\ of\ semi\ circle\ + area\ of\ 70\textdegree sector[/tex]

 [tex]A=A_{sm}+A_{70\textdegree}[/tex]

Where

 [tex]A_{sm}=\frac{1}{2} \pi r^2[/tex]

 [tex]A_{sm}=\frac{1}{2} 3.14 4^2[/tex]

 [tex]A_{sm}=25.12ft^2[/tex]

 [tex]A_{70\textdegree}=\frac{1}{2}r^2 \frac{70\textdegree}{360\textdegree}[/tex]

 [tex]A_{70\textdegree}=\frac{1}{2}*4^2* \frac{70\textdegree}{360\textdegree}[/tex]

 [tex]A_{70\textdegree}=1.55ft^2[/tex]

Therefore the area A is given as

 [tex]A=A_{sm}+A_{70\textdegree}[/tex]

 [tex]A=25.12ft^2+1.55ft^2[/tex]

 [tex]A=256.67ft^2[/tex]