Answer: [tex]-4,-15;\ \left(-\dfrac{19}{2},-\dfrac{121}{4}\right)[/tex]
Step-by-step explanation:
Given
Function is [tex]F(t)=t^2+19+60[/tex]
Zeroes of the function are
[tex]t^2+19t+60=0\\\\\Rightarrow t=\dfrac{-19\pm\sqrt{19^2-4\times 1\times 60}}{2\times 1}\\\\\Rightarrow t=\dfrac{-19\pm \sqrt{121}}{2}\\\\\Rightarrow t=\dfrac{-19\pm 11}{2}\\\\\Rightarrow t=-4,-15[/tex]
Using completing the square method
[tex]y=t^2+2\times \dfrac{19}{2}t+\dfrac{19^2}{2^2}-\dfrac{19^2}{2^2}+60\\\\y=\left(t+\dfrac{19}{2}\right)^2+60-\dfrac{361}{4}\\\\y=\left(t+\dfrac{19}{2}\right)^2-\dfrac{121}{4}\\\\y+\dfrac{121}{4}=\left(t+\dfrac{19}{2}\right)^2\\\\\left(y-(-\dfrac{121}{4}\right)=\left(t-(-\dfrac{19}{2})\right)^2\\\\\text{The vertex is }\left(-\dfrac{19}{2},-\dfrac{121}{4}\right)[/tex]