Find the exact value of the following, without using a calculator.

9514 1404 393
Answer:
(√17 -4√595)/102
Step-by-step explanation:
To use the sine of the angle sum formula, we need to know the sine and cosine of each of the angles.
sin(sin^-1(1/6)) = 1/6 . . . . a first-quadrant angle
cos(sin^-1(1/6)) = √(1 -(1/6)²) = √(35/36) = (√35)/6
sin(tan^-1(-4)) = -4/√(1+(-4)²) = -4/√17 . . . . a 4th-quadrant angle
cos(tan^-1(-4)) = √(1 -(-4/√17)²) = 1/√17
The sum of angles formula is ...
sin(α+β) = sin(α)cos(β) +cos(α)sin(β)
So, our sine is ...
[tex]\sin\left(\sin^{-1}\left(\dfrac{1}{6}\right)+\tan^{-1}(-4)\right)=\dfrac{1}{6}\cdot\dfrac{1}{\sqrt{17}}+\dfrac{\sqrt{35}}{6}\cdot\dfrac{-4}{\sqrt{17}}\\\\=\dfrac{1-4\sqrt{35}}{6\sqrt{17}}=\boxed{\dfrac{\sqrt{17}-4\sqrt{595}}{102}}[/tex]