Evaluate each limit given that limit x->2 f(x)=9.

limit x->2 1/3[f(x)]^2= 27✔️
limit x->2 3f(x)+5= 32✔️
limit x->2 [f(x)]3/2= 27✔️

Respuesta :

Answer:

27

32

27

Step-by-step explanation:

1) limit x->2 1/3[f(x)]^2= 27

2) limit x->2 3f(x)+5= 32

3) limit x->2 [f(x)]3/2= 27/2

What is limit?

"A limit is the value that a function approaches as the input approaches some value."

Limit properties:

If limit f(x) = m and constant 'a',

limit a (f(x)) = a × m

limit (f(x))^n = (m)^n

limit (a) = a

limit (f(x) + a) = m + a

Given: limit x->2 f(x)=9.

We need to evaluate each limit.

1) limit x->2 1/3[f(x)]^2

⇒ [tex]\lim_{x \to 2} \frac{1}{3} (f(x))^2[/tex]

= [tex]\frac{1}{3} \lim_{x \to 2} (f(x))^2[/tex]

= [tex]\frac{1}{3} (\lim_{x \to 2} f(x))^2[/tex]

= [tex]\frac{1}{3} \times (9)^2[/tex]

= [tex]\frac{81}{3}[/tex]

= 27

2) limit x->2 3f(x)+5

⇒ [tex]\lim_{x \to 2} (3f(x)+5)[/tex]

= [tex]\lim_{x \to 2} 3f(x)+ \lim_{x \to 2} 5[/tex]

= [tex]3\lim_{x \to 2} f(x) + 5[/tex]

= [tex](3 \times 9)+5[/tex]

=[tex]\bold{32}[/tex]

3) limit x->2 [f(x)]3/2

⇒ [tex]\lim_{x \to 2} (f(x))\frac{3}{2}[/tex]

= [tex]\frac{3}{2} \times (\lim_{x \to 2} f(x))[/tex]

= [tex]\frac{3}{2} \times 9[/tex]

= 27/2

Learn more about limit here:

https://brainly.com/question/1619243

#SPJ2