Respuesta :
1) limit x->2 1/3[f(x)]^2= 27
2) limit x->2 3f(x)+5= 32
3) limit x->2 [f(x)]3/2= 27/2
What is limit?
"A limit is the value that a function approaches as the input approaches some value."
Limit properties:
If limit f(x) = m and constant 'a',
limit a (f(x)) = a × m
limit (f(x))^n = (m)^n
limit (a) = a
limit (f(x) + a) = m + a
Given: limit x->2 f(x)=9.
We need to evaluate each limit.
1) limit x->2 1/3[f(x)]^2
⇒ [tex]\lim_{x \to 2} \frac{1}{3} (f(x))^2[/tex]
= [tex]\frac{1}{3} \lim_{x \to 2} (f(x))^2[/tex]
= [tex]\frac{1}{3} (\lim_{x \to 2} f(x))^2[/tex]
= [tex]\frac{1}{3} \times (9)^2[/tex]
= [tex]\frac{81}{3}[/tex]
= 27
2) limit x->2 3f(x)+5
⇒ [tex]\lim_{x \to 2} (3f(x)+5)[/tex]
= [tex]\lim_{x \to 2} 3f(x)+ \lim_{x \to 2} 5[/tex]
= [tex]3\lim_{x \to 2} f(x) + 5[/tex]
= [tex](3 \times 9)+5[/tex]
=[tex]\bold{32}[/tex]
3) limit x->2 [f(x)]3/2
⇒ [tex]\lim_{x \to 2} (f(x))\frac{3}{2}[/tex]
= [tex]\frac{3}{2} \times (\lim_{x \to 2} f(x))[/tex]
= [tex]\frac{3}{2} \times 9[/tex]
= 27/2
Learn more about limit here:
https://brainly.com/question/1619243
#SPJ2