Respuesta :

Answer:

[tex]\displaystyle x=\left\{\frac{\pi}{4}, \frac{5\pi}{4}\right\}[/tex]

Step-by-step explanation:

We want to solve the equation:

[tex]\cos(x)\tan(x)=\cos(x)[/tex]

On the interval [0, 2π).

First, we can subtract cos(x) from both sides:

[tex]\cos(x)\tan(x)-\cos(x)=0[/tex]

Factor:

[tex]\cos(x)\left(\tan(x)-1\right)=0[/tex]

Zero Product Property:

[tex]\cos(x)=0\text{ or } \tan(x)-1=0[/tex]

Solve for each case:

[tex]\cos(x)=0\text{ or }\tan(x)=1[/tex]

Using the unit circle:

[tex]\displaystyle x=\left\{\frac{\pi}{4}, \frac{\pi}{2}, \frac{5\pi}{4}, \frac{3\pi}{2}\right\}[/tex]

However, since tangent isn't defined for π/2 and 3π/2, we remove them from our solutions. Hence:

[tex]\displaystyle x=\left\{\frac{\pi}{4}, \frac{5\pi}{4}\right\}[/tex]

Otras preguntas