Answer:
[tex]428.75\ \text{Hz}[/tex]
Explanation:
[tex]\Delta y[/tex] = Change in water level = [tex]220-180=40\ \text{cm}[/tex]
[tex]\lambda[/tex] = Wavelength
[tex]v[/tex] = Speed of sound = 343 m/s
Between the points of resonance there exists [tex]\dfrac{1}{2}\lambda[/tex]
[tex]\dfrac{1}{2}\lambda=\Delta y\\\Rightarrow \lambda=2\Delta y\\\Rightarrow \lambda=2\times 40\\\Rightarrow \lambda=80\ \text{cm}[/tex]
Wavelength is given by
[tex]f=\dfrac{v}{\lambda}\\\Rightarrow f=\dfrac{343}{0.8}\\\Rightarrow f=428.75\ \text{Hz}[/tex]
The frequency of the tuning fork is [tex]428.75\ \text{Hz}[/tex].