Respuesta :
Answer:
Outside, as the distance between the point and the center of the circle is more than the radius.
Step-by-step explanation:
Equation of a circle:
The equation of a circle has the following format:
[tex](x-x_0)^2 + (y-y_0)^2 = r^2[/tex]
In which [tex](x_0,y_0)[/tex] is the center and r is the radius.
Testing if a point is inside the circle:
Point (x,y), we replace in the equation. If it is less than the radius squared(in this case, 62), it is in.
In this question:
Point (-3,-5). So
[tex](-3+7)^2 + (-5-2)^2 = 4^2 + (-7)^2 = 16 + 49 = 65[/tex]
The square distance of the point to the center is of 65, which is more than the square of the radius, meaning that the point is outside the circle.