Respuesta :

Space

Answer:

d) The limit does not exist

General Formulas and Concepts:

Calculus

Limits

  • Right-Side Limit:                                                                                             [tex]\displaystyle \lim_{x \to c^+} f(x)[/tex]
  • Left-Side Limit:                                                                                               [tex]\displaystyle \lim_{x \to c^-} f(x)[/tex]

Limit Rule [Variable Direct Substitution]:                                                             [tex]\displaystyle \lim_{x \to c} x = c[/tex]

Limit Property [Addition/Subtraction]:                                                                   [tex]\displaystyle \lim_{x \to c} [f(x) \pm g(x)] = \lim_{x \to c} f(x) \pm \lim_{x \to c} g(x)[/tex]

Step-by-step explanation:

*Note:

In order for a limit to exist, the right-side and left-side limits must equal each other.

Step 1: Define

Identify

[tex]\displaystyle f(x) = \left\{\begin{array}{ccc}5 - x,\ x < 5\\8,\ x = 5\\x + 3,\ x > 5\end{array}[/tex]

Step 2: Find Right-Side Limit

  1. Substitute in function [Limit]:                                                                         [tex]\displaystyle \lim_{x \to 5^+} 5 - x[/tex]
  2. Evaluate limit [Limit Rule - Variable Direct Substitution]:                           [tex]\displaystyle \lim_{x \to 5^+} 5 - x = 5 - 5 = 0[/tex]

Step 3: Find Left-Side Limit

  1. Substitute in function [Limit]:                                                                         [tex]\displaystyle \lim_{x \to 5^-} x + 3[/tex]
  2. Evaluate limit [Limit Rule - Variable Direct Substitution]:                           [tex]\displaystyle \lim_{x \to 5^+} x + 3 = 5 + 3 = 8[/tex]

∴ Since  [tex]\displaystyle \lim_{x \to 5^+} f(x) \neq \lim_{x \to 5^-} f(x)[/tex]  , then  [tex]\displaystyle \lim_{x \to 5} f(x) = DNE[/tex]

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit:  Limits