Find the measures of an exterior angle and an interior angle given the number of sides of each regular polygon.

Round to the nearest tenth, if necessary.

Respuesta :

Answer:

[tex]\theta = 25.7^\circ[/tex] --- Measure of each exterior angle

[tex]\theta = 154.3^\circ[/tex] --- Measure of each interior angle

Step-by-step explanation:

Given [Missing from the question]

[tex]n = 14[/tex] --- number of sides

Required

- The measure of an exterior angle

- The measure of an interior angle

For an n-sided polygon, the measure of each exterior angle is:

[tex]\theta = \frac{360}{n}[/tex]

Substitute 14 for n

[tex]\theta = \frac{360}{14}[/tex]

[tex]\theta = 25.7^\circ[/tex]

For an n-sided polygon, the measure of each interior angle is:

[tex]\theta = \frac{(n - 2) * 180}{n}[/tex]

Substitute 14 for n

[tex]\theta = \frac{(14 - 2) * 180}{14}[/tex]

[tex]\theta = \frac{12 * 180}{14}[/tex]

[tex]\theta = \frac{2160}{14}[/tex]

[tex]\theta = 154.3^\circ[/tex]