Respuesta :

Answer:

[tex](a)\ \tan A = \frac{5}{12}[/tex]

[tex](b)\ \cos B = \frac{5}{13}[/tex]

Step-by-step explanation:

Given

See attachment for triangles

Solving (a)

[tex]\tan(A)[/tex]

The tan of an angle is:

[tex]\tan(\theta) = \frac{Opposite}{Adjacent}[/tex]

From the given triangle.

[tex]Opposite = 5[/tex]

[tex]Adjacent = 12[/tex]

So, we have:

[tex]\tan A = \frac{5}{12}[/tex]

Solving (b)

[tex]\cos(B)[/tex]

The cos of an angle is:

[tex]\cos(\theta) = \frac{Adjacent}{Hypotenuse}[/tex]

From the given triangle.

[tex]Adjacent = 5[/tex]

[tex]Hypotenuse = 13[/tex]

So, we have:

[tex]\cos B = \frac{5}{13}[/tex]

Ver imagen MrRoyal