Answer:
[tex](a)\ \tan A = \frac{5}{12}[/tex]
[tex](b)\ \cos B = \frac{5}{13}[/tex]
Step-by-step explanation:
Given
See attachment for triangles
Solving (a)
[tex]\tan(A)[/tex]
The tan of an angle is:
[tex]\tan(\theta) = \frac{Opposite}{Adjacent}[/tex]
From the given triangle.
[tex]Opposite = 5[/tex]
[tex]Adjacent = 12[/tex]
So, we have:
[tex]\tan A = \frac{5}{12}[/tex]
Solving (b)
[tex]\cos(B)[/tex]
The cos of an angle is:
[tex]\cos(\theta) = \frac{Adjacent}{Hypotenuse}[/tex]
From the given triangle.
[tex]Adjacent = 5[/tex]
[tex]Hypotenuse = 13[/tex]
So, we have:
[tex]\cos B = \frac{5}{13}[/tex]