A sample was then prepared containing 14.00 mL of coffee and 8.00 mL of 4.80 ppm Li , and diluted to a 50.00 mL total volume. The ratio of the internal standard signal to the analyte signal in the unknown sample was found to be 0.840/1.000 (Li signal/Na signal). Determine the unknown concentration of Na in the coffee sample.

Respuesta :

Answer:

The right answer is "[tex][Na^+]=5.57 \ ppm[/tex]".

Explanation:

The given values are:

[tex]\frac{A_s}{A_{coffee}} =\frac{0.840}{1.000}[/tex]

According to the question,

The concentration of standard will be:

=  [tex]\frac{7.80}{50.00}\times 4.80[/tex]

=  [tex]0.156\times 4.80[/tex]

=  [tex]0.748 \ ppm[/tex]

Coffee after dilution,

⇒  [tex]\frac{A_{coffee}}{C_{coffee}} =F\times \frac{A_s}{C_s}[/tex]

or,

⇒  [tex]C_{coffee}=\frac{A_{coffee}}{A_s}\times \frac{C_s}{F}[/tex]

On substituting the values, we get

⇒               [tex]=\frac{1.000}{0.840}\times \frac{0.748}{1.68}[/tex]

⇒               [tex]=1.191\times 1.3104[/tex]

⇒               [tex]=1.561 \ ppm[/tex]

hence,

In unknown sample, the concentration of coffee will be:

=  [tex]1.561\times \frac{50}{14}[/tex]

=  [tex]\frac{78.05}{14}[/tex]

=  [tex]5.57 \ ppm[/tex]