Respuesta :

Given:

In a right angle triangle θ is an acute angle and [tex]\tan\theta =\dfrac{3}{5}[/tex].

To find:

The value of [tex]\cos \theta[/tex].

Solution:

In a right angle triangle,

[tex]\tan \theta=\dfrac{Perpendicular}{Base}[/tex]

We have,

[tex]\tan\theta =\dfrac{3}{5}[/tex]

It means the ratio of perpendicular to base is 3:5. Let 3x be the perpendicular and 5x be the base.

By using Pythagoras theorem,

[tex]Hypotenuse=\sqrt{Perpendicular^2+base^2}[/tex]

[tex]Hypotenuse=\sqrt{(3x)^2+(5x)^2}[/tex]

[tex]Hypotenuse=\sqrt{9x^2+25x^2}[/tex]

[tex]Hypotenuse=\sqrt{34x^2}[/tex]

[tex]Hypotenuse=x\sqrt{34}[/tex]

In a right angle triangle,

[tex]\cos \theta=\dfrac{Base}{Hypotenuse}[/tex]

[tex]\cos \theta=\dfrac{5x}{x\sqrt{34}}[/tex]

[tex]\cos \theta=\dfrac{5}{\sqrt{34}}[/tex]

Therefore, the value of [tex]\cos \theta[/tex] is [tex]\dfrac{5}{\sqrt{34}}[/tex].