Consider the following rational function fff. f(x)=\dfrac{-4x^3+7x+9}{8x^6-9x^4-2x}f(x)= 8x 6 −9x 4 −2x −4x 3 +7x+9 ​ f, left parenthesis, x, right parenthesis, equals, start fraction, minus, 4, x, cubed, plus, 7, x, plus, 9, divided by, 8, x, start superscript, 6, end superscript, minus, 9, x, start superscript, 4, end superscript, minus, 2, x, end fraction Determine fff's end behavior. f(x)\tof(x)→f, left parenthesis, x, right parenthesis, \to as x\to -\inftyx→−∞x, \to, minus, infinity. f(x)\tof(x)→f, left parenthesis, x, right parenthesis, \to as x\to \inftyx→∞x, \to, infinity.

Respuesta :

Answer: 0 to -∞

               0 to ∞

Step-by-step explanation: