contestada

Extra Credit:
8 congruent spheres are packed into a cube with
edge length x so that each sphere is tangent to 3
faces of the cube and 3 other spheres as shown.
what is the ratio of the total volume of the
spheres of the volume of the cube?

Extra Credit 8 congruent spheres are packed into a cube with edge length x so that each sphere is tangent to 3 faces of the cube and 3 other spheres as shown wh class=

Respuesta :

Answer:

Ratio of the volumes of the spheres and cube = 0.523

Step-by-step explanation:

From the figure attached,

Diameter of one sphere = Half of the measure of one side of the cube

                                        = [tex]\frac{x}{2}[/tex]

Radius of the sphere = [tex]\frac{\frac{x}{2}}{2}[/tex]

                                   = [tex]\frac{x}{4}[/tex]

Volume of a cube is given by the formula,

V = [tex]\frac{4}{3}\pi r^{3}[/tex]

Therefore, volume of one sphere = [tex]\frac{4}{3}\pi (\frac{x}{4})^{3}[/tex]

                                                        = [tex]\frac{x^3\pi}{48}[/tex]

Volume of 8 spheres = [tex]8\times \frac{x^3\pi}{48}[/tex]

                                   = [tex]\frac{x^3\pi}{6}[/tex]

Volume of a cube = (side)³

                              = [tex]x^3[/tex]

Ratio of the volumes of the sphere and cube = [tex]\frac{\frac{\pi x^3}{6} }{x^3}[/tex]

                                                                              = [tex]\frac{\pi}{6}[/tex]

                                                                              ≈ 0.523

Ver imagen eudora