Respuesta :

Given:

The given function is:

[tex]\dfrac{(x^3+1)(x-2)}{x^2}[/tex]

To find:

The differentiation of the given function.

Solution:

Consider the given function,

[tex]y=\dfrac{(x^3+1)(x-2)}{x^2}[/tex]

It can be written as:

[tex]y=\dfrac{(x^3)(x)+(x^3)(-2)+(1)(x)+(1)(-2)}{x^2}[/tex]

[tex]y=\dfrac{x^4-2x^3+x-2}{x^2}[/tex]

[tex]y=\dfrac{x^4}{x^2}-\dfrac{2x^3}{x^2}+\dfrac{x}{x^2}-\dfrac{2}{x^2}[/tex]

[tex]y=x^2-2x+\dfrac{1}{x}-\dfrac{2}{x^2}[/tex]

Differentiate with respect to x.

[tex]y'=\dfrac{d}{dx}(x^2)-\dfrac{d}{dx}(2x)+\dfrac{d}{dx}(x^{-1})-\dfrac{d}{dx}\2(x^{-2})[/tex]

[tex]y'=2x-2(1)+(-x^{-2})-2(-2x^{-3})[/tex]

[tex]y'=2x-2-\dfrac{1}{x^2}+\dfrac{4}{x^3}[/tex]  

Therefore, the differentiation of the given function is [tex]2x-2-\dfrac{1}{x^2}+\dfrac{4}{x^3}[/tex].