Respuesta :

Given:

The function is:

[tex]y=(f(x))^2[/tex]

To find:

The derivative of the given function at x=1, i.e., y'(1).

Solution:

Chain rule of differentiation:

[tex][f(g(x))]'=f'(g(x))g'(x)[/tex]

We have,

[tex]y=(f(x))^2[/tex]

Differentiate with respect to x.

[tex]y'(x)=2(f(x))\dfrac{d}{dx}f(x)[/tex]

[tex]y'(x)=2f(x)f'(x)[/tex]

Putting [tex]x=1[/tex], we get

[tex]y'(1)=2f(1)f'(1)[/tex]

From the given table of values it is clear that f(1)=3 and f'(1)=3. Putting these values in the above equation, we get

[tex]y'(1)=2(3)(3)[/tex]

[tex]y'(1)=18[/tex]

Therefore, the value of y'(1) is 18.