Let u=ln(x) and v=ln(y). Write the expression below in terms of u and v

=======================================================
Work Shown:
We'll apply these log rules
[tex]\text{Log Rule 1: } \ \ \ \ln\left(\frac{x}{y}\right) = \ln(x) - \ln(y)\\\\[/tex]
[tex]\text{Log Rule 2: } \ \ \ \ln\left(x^y\right) = y\ln(x)\\\\[/tex]
These log rules can be used for logs of any base, and not just natural logs.
[tex]z = \ln\left(\frac{\sqrt{x}}{y}\right)\\\\z = \ln\left(\sqrt{x}\right)-\ln\left(y\right) \text{ ... Use log rule 1}\\\\z = \ln\left(x^{1/2}\right)-\ln\left(y\right)\\\\z = \frac{1}{2}\ln\left(x\right)-\ln\left(y\right) \text{ ... Use log rule 2}\\\\z = \frac{1}{2}u-v\\\\[/tex]
Therefore,
[tex]\ln\left(\frac{\sqrt{x}}{y}\right) = \frac{1}{2}u-v\\\\[/tex]
when [tex]u = \ln(x) \ \text{ and } \ v = \ln(y)\\\\[/tex]