Respuesta :

Answer:

[tex]f(x) = 2[\frac{3^x}{9}] + 2[/tex]

[tex]f(x) = 8(4)^x[/tex]

Step-by-step explanation:

Given

[tex]f(x) = 2(3)^{x-2} + 2[/tex]

[tex]f(x) = \frac{1}{2}(4)^{x+2}[/tex]

Required

Remove the h component

In a function, the h component is highlighted as:

[tex]f(x) = a^{x+h}[/tex]

So, we have:

[tex]f(x) = 2(3)^{x-2} + 2[/tex]

Split the exponents using the following law of indices:

[tex]a^m/a^n = a^{m-n}[/tex]

[tex]f(x) = 2*\frac{3^x}{3^2} + 2[/tex]

[tex]f(x) = 2*\frac{3^x}{9} + 2[/tex]

[tex]f(x) = 2[\frac{3^x}{9}] + 2[/tex]

The h component has been removed

[tex]f(x) = \frac{1}{2}(4)^{x+2}[/tex]

Split the exponent using the following law of indices

[tex]a^{m+n} =a^m * a^n[/tex]

So, we have:

[tex]f(x) = \frac{1}{2}(4)^x * 4^2[/tex]

Express 4^2 as 16

[tex]f(x) = \frac{1}{2}(4)^x * 16[/tex]

Divide 16 by 2

[tex]f(x) = 8(4)^x[/tex]