Respuesta :

Answer:

[tex]g(x) = 4(x - 2)^2 -9[/tex]

Step-by-step explanation:

Given

[tex]g(x) = 4x^2 - 16x + 7[/tex]

Required

Complete the square

Rewrite so that [tex]x^2[/tex] has 1 coefficient

[tex]g(x) = 4(x^2 - 4x) + 7[/tex]

Take half of the coefficient of x

[tex]\frac{4}{2} = 2[/tex]

Square the result

[tex](\frac{4}{2})^2 = 2^2[/tex]

[tex](\frac{4}{2})^2 = 4[/tex]

Add and subtract the result in the bracket

[tex]g(x) = 4(x^2 - 4x + 4 - 4) + 7[/tex]

Expand the bracket to remove -4

[tex]g(x) = 4(x^2 - 4x + 4) - 16 + 7[/tex]

[tex]g(x) = 4(x^2 - 4x + 4) -9[/tex]

Expand the bracket

[tex]g(x) = 4(x^2 - 2x -2x+ 4) -9[/tex]

Factorize

[tex]g(x) = 4(x(x - 2) -2(x-2)) -9[/tex]

Factor out x - 2

[tex]g(x) = 4((x - 2)(x-2)) -9[/tex]

Express as square

[tex]g(x) = 4(x - 2)^2 -9[/tex]