Answer:
The beat frequency = 2.0 Hz
Explanation:
From the given information
The 3rd harmonic frequency of the note is equivalent to thrice note A fundamental frequency.
i.e.
[tex]f_{3A} = 3f_A[/tex]
where;
[tex]f_A =[/tex] note A fundamental freq.
replacing 440 Hz for [tex]f_A[/tex]
[tex]f_{#a} = 3 (440 \ Hz)[/tex]
[tex]f_{3A} = 1320 Hz[/tex]
However, the 2nd harmonic of the E is equivalent to two times the fundamental frequency of the note E.
i.e.
[tex]f_{2E} = 2f_E[/tex]
[tex]f_E =[/tex] note E fundamental freq.
replacing 659 Hz for [tex]f_E[/tex]
[tex]f_{2E} = 2(659)[/tex]
[tex]f_{2E} = 1318 \ Hz[/tex]
Finally, the beat frequency when the E string is properly tuned is:
[tex]\Delta f = f_{3A}-f_{2E}[/tex]
[tex]\Delta f = 1320 \ Hz - 1318 \ Hz[/tex]
[tex]\Delta f = 2.0 \ Hz[/tex]
Thus, the beat frequency = 2.0 Hz