Answer:
90% confidence interval is (43.25, 61.41)
Step-by-step explanation:
Given that,
n = 17
Mean, [tex]\bar{x}[/tex] = 52.33
Standard deviation, [tex]\sigma[/tex] = 21.44
∝ = 0.10
Now,
Confidence interval = [tex]\bar{x}[/tex] ± [tex]t_{\frac{\alpha }{2}, n-1} [\frac{\sigma}{\sqrt{n} } ][/tex]
= 52.33 ± 1.7646 [ 21.44 / √17 ]
= 52.33 ± 9.0791
So,
52.33 + 9.0791 = 61.4091
52.33 - 9.0791 = 43.2509
So,
90% confidence interval is (43.25, 61.41)
Also,
Lower end-point = 43.25
Upper end-point = 61.41