Respuesta :

Answer:

y < -3 and

2x - 3y ≥ -15

Step-by-step explanation:

y < -3

Take any two points on the bold line

(0 , -5) and (-3 , -7)

Now find the slope for this line and then the equation of the line

Slope = [tex]\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\\[/tex]

         [tex]= \frac{-7-[-5]}{-3-0}\\\\=\frac{-7+5}{-3}\\\\=\frac{-2}{-3}\\\\= \frac{2}{3}\\[/tex]

Slope, point equation,

y - y1 = m(x -x1)

[tex]y - [-5)=\frac{2}{3}(x-0)\\\\y +5 = \frac{2}{3}x\\\\3*y + 5*3 = \frac{2}{3}x*3\\\\3y + 15 =2x\\\\2x - 3y = -15\\[/tex]

Take any point from the shaded region and plugin the LHS of the equation.

(-6 , -5)

LHS = 2x - 3y

      = 2*(-6) -3*(-5)

      = -12 + 15

      = 3  which is ≥ -15

2x - 3y ≥ -15