Given:
The expression is:
[tex]3x^5-7x^4+6x^2-14x[/tex]
To find:
The complete factor form of the given expression.
Solution:
We have,
[tex]3x^5-7x^4+6x^2-14x[/tex]
Tanking out the GCF, we get
[tex]=x(3x^4-7x^3+6x-14)[/tex]
[tex]=x(x^3(3x-7)+2(3x-7))[/tex]
[tex]=x(x^3+2)(3x-7)[/tex]
Therefore, the complete factor form of the given expression is [tex]x(x^3+2)(3x-7)[/tex].