Answer:
[tex](a)\ 5, \sqrt 6, \sqrt{31[/tex]
[tex](c)\ 9, 12, 15[/tex]
Step-by-step explanation:
Required
Side lengths that form a right triangle
Applying Pythagoras theorem
[tex]a^2 = b^2 + c^2[/tex]
Where a is the longest side.
So, we have:
[tex](a)\ 5, \sqrt 6, \sqrt{31[/tex]
[tex](\sqrt{31})^2 = 5^2 + (\sqrt 6)^2[/tex]
[tex]31 = 25 + 6[/tex]
[tex]31 = 31[/tex]
This forms a right triangle
[tex](b)\ \sqrt 5, \sqrt 5, 50[/tex]
[tex]50^2 = (\sqrt 5)^2 + (\sqrt 5)^2[/tex]
[tex]2500 = 5 + 5[/tex]
[tex]2500 \ne 10[/tex]
This does not form a right triangle
[tex](c)\ 9, 12, 15[/tex]
[tex]15^2 = 12^2 + 9^2[/tex]
[tex]225 = 144 + 81[/tex]
[tex]225 = 225[/tex]
This forms a right triangle