Respuesta :

Given:

In a parallelogram [tex]PRTV, VQ\perp PR,VS\perp RT[/tex].

To prove:

[tex]\dfrac{PQ}{ST}=\dfrac{PV}{VT}[/tex]

Solution:

It is given that [tex]VQ\perp PR,VS\perp RT[/tex], it means [tex]\angle PQV[/tex] and [tex]\angle TSV[/tex] are right angle triangles.

In triangle PQV and triangle TSV,

[tex]\angle PQV\cong \angle TSV[/tex]         (Right angles)

[tex]\angle QPV\cong \angle STV[/tex]         (Opposite angles of a parallelogram)

Two corresponding angles are congruent. So, by AA property of similarity, we get

[tex]\Delta PQV\sim \Delta TSV[/tex]

We know that the corresponding parts of similar triangles are proportional. So,

[tex]\dfrac{PQ}{TS}=\dfrac{PV}{TV}[/tex]

It can be rewritten as:

[tex]\dfrac{PQ}{ST}=\dfrac{PV}{VT}[/tex]

Hence proved.