LOT OF POINTS
approximate the solutions to this system.

y = 3x2 + x − 6

y = x − 4

Round your answers to the nearest hundredth.

Respuesta :

Nayefx

Answer:

[tex] \displaystyle ( x_{1},y_{1}) = (0.82, - 3.18) \\ ( x_{2},y_{2}) = ( - 0.82, - 4.82)[/tex]

Step-by-step explanation:

we are given a system of quadratic and linear equation

we want to figure out x and y

in other words the coordinates where the linear function intercept quadrilateral function

to do so

you can use substitution method

since y equals to both equation so substitute:

[tex] \displaystyle {3x}^{2} + x - 6 = x - 4[/tex]

move right hand side expression to left hand side and change its sign so there's only 0 left on the left hand side:

[tex] \displaystyle {3x}^{2} + x - 6 - x + 4= 0[/tex]

simplify addition:

[tex] \displaystyle {3x}^{2} -2=0[/tex]

add 2 to both sides:

[tex] \displaystyle {3x}^{2} = 2[/tex]

divide both sides by 3

[tex] \displaystyle \frac{ {3x}^{2} }{3} = \frac{2}{3} [/tex]

[tex] \displaystyle {x}^{2} = \frac{2}{3} [/tex]

square root both sides:

[tex] \displaystyle {x} = \sqrt{\frac{2}{3} } \\ x = \frac{ \sqrt{2} }{ \sqrt{3} } [/tex]

rationalise the denominator by multiplying √3/√3:

[tex] \displaystyle x = \pm\frac{ \sqrt{6} }{3} = \pm0.82[/tex]

now let's figure out y

substitute the value of x to the linear equation:

[tex]y = \pm0.82 - 4[/tex]

when positive

[tex]y = - 3.18[/tex]

when negative

[tex]y = - 4.82[/tex]

Ver imagen Nayefx

Answer:

(x1,y1) = (0.82, - 3.18)

(x2,y2) = (-0.82, -4.82)

Step-by-step explanation:

Plato gang