Respuesta :
Answer:
Part A
[tex]The \ circumradius, \ R = \dfrac{a}{cos \left(\dfrac{\pi}{n} \right)}[/tex]
Plugging in the given values we get;
[tex]The \ circumradius, \ R = \dfrac{6 \cdot \sqrt{3} }{cos \left(\dfrac{\pi}{6} \right)} = \dfrac{6 \cdot \sqrt{3} }{\left(\dfrac{\sqrt{3} }{2} \right)} = 6 \cdot \sqrt{3} \times \dfrac{2}{\sqrt{3} } = 12[/tex]
R = 12 inches
The radius of the circumscribing circle is 12 inches
Part B
The length of each side of the hexagon, 's', is;
[tex]s = a \times 2 \times tan \left(\dfrac{\pi}{n} \right)[/tex]
Therefore;
[tex]s = 6 \cdot \sqrt{3} \times 2 \times tan \left(\dfrac{\pi}{6} \right) = 6 \cdot \sqrt{3} \times 2 \times \left(\dfrac{1}{\sqrt{3} } \right) = 12[/tex]
s = 12 inches
The perimeter, P = n × s = 6 × 12 = 72 inches
The perimeter of the hexagon is 72 inches
Step-by-step explanation:
The given parameters of the regular hexagon are;
The length of the apothem of the regular hexagon, a = 6·√3 inches
The relationship between the apothem, 'a', and the circumradius, 'R', is given as follows;
[tex]a = R \cdot cos \left(\dfrac{\pi}{n} \right)[/tex]
Where;
n = The number of sides of the regular polygon = 6 for a hexagon
'a = 6·√3 inches', and 'R' are the apothem and the circumradius respectively;
Part A
Therefore, we have;
[tex]The \ circumradius, \ R = \dfrac{a}{cos \left(\dfrac{\pi}{n} \right)}[/tex]
Plugging in the values gives;
[tex]The \ circumradius, \ R = \dfrac{6 \cdot \sqrt{3} }{cos \left(\dfrac{\pi}{6} \right)} = \dfrac{6 \cdot \sqrt{3} }{\left(\dfrac{\sqrt{3} }{2} \right)} = 6 \cdot \sqrt{3} \times \dfrac{2}{\sqrt{3} } = 12[/tex]
The circumradius, R = 12 inches
Part B
The length of each side of the hexagon, 's', is given as follows;
[tex]s = a \times 2 \times tan \left(\dfrac{\pi}{n} \right)[/tex]
Therefore, we get;
[tex]s = 6 \cdot \sqrt{3} \times 2 \times tan \left(\dfrac{\pi}{6} \right) = 6 \cdot \sqrt{3} \times 2 \times \left(\dfrac{1}{\sqrt{3} } \right) = 12[/tex]
The length of each side of the hexagon, s = 12 inches
The perimeter of the hexagon, P = n × s = 6 × 12 = 72 inches
The perimeter of the hexagon = 72 inches
Answer: radius = 12, perimeter = 72
Step-by-step explanation:
We know that in 30-60-90 right triangles, the hypotenuse is exactly twice the length of the short leg and the long leg is the short leg times √3.
so therefore, if the long leg (apothem) is equal to 6√3, the short leg is equal to 6
long leg = 6√3
long leg = short leg √3
short leg = 6
hypotenuse (radius) = 2(short leg)
hypotenuse (radius) = 2(6)
hypotenuse (radius) = 12
The radius of hexagon ABCDEF = 12 inches
Perimeter = r (sides)
Perimeter = r (6)
Perimeter = 12 (6)
Perimeter = 72
The perimeter of hexagon ABCDEF = 72 inches