Respuesta :

Answer:

[tex](x^\frac{3}{8})^\frac{3}{4} = \sqrt[32]{x^9}[/tex]

Step-by-step explanation:

Given

[tex](x^\frac{3}{8})^\frac{3}{4}[/tex]

Required

Convert to radical form

[tex](x^\frac{3}{8})^\frac{3}{4}[/tex]

Evaluate the exponents

[tex](x^\frac{3}{8})^\frac{3}{4} = x^\frac{3*3}{8*4}[/tex]

[tex](x^\frac{3}{8})^\frac{3}{4} = x^\frac{9}{32}[/tex]

Split the exponent

[tex](x^\frac{3}{8})^\frac{3}{4} = (x^9)^\frac{1}{32}[/tex]

Apply the following law of indices

[tex](x^a)^\frac{1}{b} = \sqrt[b]{x^a}[/tex]

So, we have:

[tex](x^\frac{3}{8})^\frac{3}{4} = \sqrt[32]{x^9}[/tex]